Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Res ; 215(Pt 1): 114127, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2004060

ABSTRACT

Understanding the relationship between precipitation and SARS-CoV-2 is significant for combating COVID-19 in the wet season. However, the causes for the variation of SARS-CoV-2 transmission intensity after precipitation is unclear. Starting from "the Zhengzhou event," we found that the virus-laden standing water formed after precipitation might trigger some additional routes for SARS-CoV-2 transmission and thus change the transmission intensity of SARS-CoV-2. Then, we developed an interdisciplinary framework to examine whether the health risk related to the virus-laden standing water needs to be a concern. The framework enables the comparison of the instant and lag effects of precipitation on the transmission intensity of SARS-CoV-2 between city clusters with different formation risks of the virus-laden standing water. Based on the city-level data of China between January 01, 2020, and December 31, 2021, we conducted an empirical study. The result showed that in the cities with a high formation risk of the virus-laden standing water, heavy rain increased the instant transmission intensity of SARS-CoV-2 by 6.2% (95%CI: 4.85-10.2%), while in the other cities, precipitation was uninfluential to SARS-CoV-2 transmission, revealing that the health risk of the virus-laden standing water should not be underestimated during the COVID-19 pandemic. To reduce the relevant risk, virus-laden water control and proper disinfection are feasible response strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Deuterium Oxide , Humans , Pandemics , Water
SELECTION OF CITATIONS
SEARCH DETAIL